Трудовые отношения

Механические процессы химической технологии. Программа модуля «Тепловые процессы Дозирование и формирование

К РАЗДЕЛУ «ТЕПЛОВЫЕ ПРОЦЕССЫ»

Программа раздела

Роль тепловых процессов в химической технологии.

Промышленные способы подвода и отвода тепла. Виды теплоносителей и области их применения. Нагревание водяным паром. Особенности использования насыщенного пара в качестве греющего агента, основные достоинства и области применения. Тепловые балансы при нагревании «острым» и «глухим» паром. Нагревание горячими жидкостями, достоинства и недостатки. Нагревание топочными газами. Нагревание электрическим током. Охлаждающие агенты.

Теплообменные аппараты. Классификация теплообменных аппаратов. Кожухотрубчатые теплообменники: конструкция, сравнительные характеристики. Змеевиковые теплообменники: достоинства и недостатки. Теплообменники с плоской поверхностью: конструкции, достоинства и недостатки. Смесительные теплообменники: конструкции, достоинства и недостатки. Регенеративные теплообменники: конструкции, достоинства и недостатки.

Расчет поверхностных теплообменников . Выбор теплообменных аппаратов. Проектные расчет теплообменников. Проверочный расчет теплообменников. Выбор оптимального режима теплообменных аппаратов.

Выпаривание . Назначение процесса. Классификация выпарных процессов и аппаратов. Однократное выпаривание: принцип действия, достоинства и недостатки. Многократное выпаривание: принцип действия, достоинства и недостатки. Выпаривание с тепловым насосом.

Выпарные аппараты . Классификация выпарных аппаратов. Выпарные аппараты с принудительной циркуляцией: конструкции, достоинства и недостатки. Пленочные выпарные аппараты: конструкции, достоинства и недостатки.

Выбор выпарных аппаратов . Расчет непрерывно действующей выпарной установки. Пути повышения экономичности выпарных установок.


ВАРИАНТЫ РАСЧЕТНОГО ЗАДАНИЯ

Задача 1

Определить необходимую поверхность теплообмена и длину труб кожухотрубчатого теплообменника с числом ходов , для осуществления процесса при массовом расходе А в трубном пространстве . Температура теплоносителя в подогревателе и холодильнике изменяется от до при среднем давлении . В испарителе и конденсаторе температура теплоносителя равна температуре кипения или конденсации при давлении .

В межтрубное пространство подается теплоноситель . Его температура меняется от до , в испарителе и конденсаторе его температура равна температуре конденсации или кипения при давлении .

Общее число труб в теплообменнике , диаметр труб равен 25x2,5 мм, диаметр кожуха . Необходимо также определить гидравлическое сопротивление аппарата, изобразить график изменения температур теплоносителей, схему кожухотрубчатого теплообменника. Исходные данные для решения задачи предоставлены в таблице 2.1.



Таблица 2.1

Последняя цифра зачетки Теплоноситель Тип теплообменника Параметры теплоносителя Предпоследняя цифра зачетки Расход теплоносителя , кг/с Характеристика теплообменника
, 0 С , 0 С , МПа , 0 С , 0 С , МПа
Число труб, Число ходов, Диаметр кожуха , мм
Вода/дифенил холодильник - - 2,3 2,0
Вода/водяной пар испаритель - - 1,0 - - 2,6 4,6 0,8
Ацетон/вода нагреватель - - 1,3
Хлорбензол/вода конденсатор - - 0,6 - 7,8 0,6
Вода/толуол холодильник - - 3,4 1,0
Метиловый спирт/вода нагреватель - - 6,4 1,4
Нафталин/водяной пар испаритель - - 0,4 - - 1,5 5,1 0,4
Аммиак/вода конденсатор - - 0,27 - 9,3 1,2
Этиловый спирт/вода холодильник - - 3,7 0,6
Четыреххлористый углерод/вода нагреватель - - 5,8 1,0

Введение

Механические процессы химической технологии

Процессы перемешивания

1 Основные характеристики процесса перемешивания

3 Способы перемешивания

Перемешивающие устройства

1 Лопастные мешалки

2 Листовые мешалки

3 Пропеллерные мешалки

4 Турбинные мешалки

5 Специальные мешалки

6 Выбор мешалки

Заключение

Список использованных источников

Приложения

Введение

Любая технология, в том числе и химическая, - это наука о методах переработки сырья в готовую продукцию. Методы переработки должны быть экономически и экологически выгодными и обоснованными.

Химическая технология возникла в конце 18 века и почти до 30-х годов 20 века состояла из описания отдельных химических производств, их основного оборудования, материальных и энергетических балансов. По мере развития химической промышленности и возрастания числа химических производств возникла необходимость изучения и установления общих закономерностей построения оптимальных химико-технологических процессов, их промышленной реализации и рациональной эксплуатации. В химической технологии необходимо четко выделять потоки веществ, с которыми происходит трансформация, сначала от сырья, затем постадийно образующимися промежуточными продуктами до получения конечного целевого продукта.

Основная задача химической технологии - сочетание в единой технологической системе разнообразных химически превращений с физико-химическими и механическими процессами: измельчением и сортировкой твёрдых материалов, образованием и разделением гетерогенных систем, массообменном и теплообменом, фазовыми превращениями, и т.д.

Механические процессы занимают одно из главных мест на производстве, так как участвуют на каждой его стадии. В данной работе особое место отведено самому распространенному процессу - механическому перемешиванию. В зависимости от условий проведения процесса на производстве применяют емкости и аппараты с перемешивающими устройствами (мешалками) различных конструкций.

Главными целями работы являются подробное изучение основных механических процессов, перемешивающих устройств, их эксплуатация и технологическое назначение.

1. Механические процессы химической технологии

К механическим относят процессы, основу которых составляет механическое воздействие на продукт, а именно:

Сортирование.

Различают два вида разделения продукта: сортирование ни качеству в зависимости от органолептических свойств (цвет, состояние поверхности, консистенция) и разделение по величине на отдельные фракции (сортирование по крупицам и форме).

В первом случае операцию производят путем органолептического осмотра продуктов, во втором - путем просеивания.

Сортирование путем просеивания применяют для удаления посторонних примесей. При просеивании через отверстия проходят частицы продукта, размеры которых меньше отверстий сит (проход), а на сите в виде отходов остаются частицы с размерами, превышающими размеры отверстий сит.

Для просеивания применяют: металлические сита со штампованными отверстиями; проволочные из круглой металлической проволоки, а также сита из шелковых, капроновых нитей и других материалов.

Сита из шелка обладают высокой гигроскопичностью и имеют сравнительно быструю изнашиваемость. Капроновые малочувствительны к изменению температуры, относительной влажности воздуха и просеиваемых продуктов; прочность капроновых нитей выше шелковых.

Измельчение.

Измельчением называют процесс механического деления обрабатываемого продукта на части с целью лучшего его технологического использования. В зависимости от вида сырья и его структурно-механических свойств используют в основном два способа измельчения: дробление и резание. Дроблению подвергают продукты с незначительной влажностью, резанию - продукты, обладающие высокой влажностью.

Дробление с целью получения крупного, среднего и мелкого измельчения производят на размолочных машинах, тонкое и коллоидное - на специальных кавитационных и коллоидных мельницах.

В процессе резания осуществляют разделение продукта па части определенной или произвольной формы (куски, пласты, кубики, брусочки и др.), а также приготовление мелкоизмельченных видов продуктов.

Для измельчения твердых продуктов, обладающих высокой механической прочностью применяют ленточные и дисковые пилы, куттеры.

Прессование.

Процессы прессования продуктов применяют в основном для разделения их на две фракции: жидкую и плотную. В процессе прессования разрушается структура продукта. Осуществляют прессование с помощью шнековых прессов непрерывного действия (экстракторы различных конструкций).

Перемешивание.

Перемешивание способствует интенсификации тепловых биохимических и химических процессов вследствие увеличения поверхностного взаимодействия между частицами смеси. От продолжительности перемешивания смесей зависят их консистенция и физические свойства.

Дозирование и формирование.

Производство продукции предприятий и ее отпуск осуществляются в соответствии с ГОСТами или ТУ или внутренними технологическими каратами и сборниками рецептур, с нормами закладки сырья и выхода готовой продукции (масса, объем). В связи с этим существенное значение имеют процессы деления продукта на порции (дозирование) и придания им определенной формы (формование). Процессы дозирования и формования осуществляются вручную или с помощью машин в зависимости от производства.

2. Процессы перемешивания

.1 Основные характеристики

Перемешивание - один из самых распространенных процессов на предприятиях пищевой и химической промышленности. При перемешивании частицы жидкости или сыпучего материала многократно перемещаются в объеме аппарата или емкости друг относительно друга под действием импульса, который передается перемешиваемой среде от механической мешалки или струи жидкости, газа или пара

Цели перемешивания:

ускорение течения химических реакций или процессов;

обеспечение равномерного распределения твердых частиц в жидкости;

обеспечение равномерного распределения жидкости в жидкости;

интенсификация нагревания или охлаждения;

обеспечение стабильной температуры по всей жидкости.

Существует много конструкций перемешивающих устройств, но наиболее распространены механические мешалки с вращательным движением перемешивающих органов. Наряду с этим осуществляется перемешивание газом или паром, перемешивание циркуляцией жидкости, вибрационное или пульсационное перемешивание.

Каждый из перечисленных типов перемешивающих устройств имеет свои специфические преимущества и недостатки и определенную область применения.

При подборе перемешивающего устройства или способа перемешивания используются следующие основные понятия:

Степень перемешивания или степень взаимного распределения двух или более веществ или жидкостей после окончания перемешивания всей системы. Степень перемешивания, иногда называемая показателем однородности, определяется опытным путем на основании взятых проб и используется для определения эффективности перемешивания.

Интенсивность перемешивания, выражаемая с помощью определенных величин, таких как частота вращения мешалки, расходуемая на перемешивание мощность, приведенная к единице объема или плотности продукта. На практике интенсивность перемешивания определяется временем достижения конкретного технологического результата, т.е. равномерности перемешивания.

Эффективность перемешивания, определяемая возможностью достижения требуемого качества перемешивания за кратчайшее время и с минимальными затратами энергии. Таким образом, из двух аппаратов с мешалками более эффективно работает тот, в котором результат достигается с наименьшими затратами энергии.

2.2 Смеси

Любое сырье и промежуточные продукты представляют собой определенные технические продукты, которые подвергаются переработке: разделение на чистые вещества или наоборот, добавление к ним других компонентов для создания новых смесей.

Смеси веществ делятся на гомогенные (однородные) и гетерогенные (неоднородные). В таблице-1 представлены примеры различных смесей.

Агрегатное состояние составных частей (до образования смеси)Гомогенная смесь (гомогенная система)Гетерогенная смесь (гетерогенная система)Твёрдое - твёрдоеТвёрдые растворы, сплавы (например латунь, бронза)Горные породы (например гранит, минералосодержащие руды и др.)Жидкое - жидкоеЖидкие растворы (например, уксус - раствор уксусной кислоты в воде) Двух- и многослойные жидкие системы, эмульсии (например, молоко - капли жидкого жира в воде)Агрегатное состояние составных частей (до образования смеси)Гомогенная смесь (гомогенная система)Гетерогенная смесь (гетерогенная система) Твёрдое - жидкоеЖидкие растворы (например, водные растворы солей)Твёрдое в жидком - суспензии или взвеси (например, частицы глины в воде, коллоидные растворы) Жидкое в твёрдом - жидкость в пористых телах (например, почвы, грунты)Твёрдое - газообразноеХемосорбированный водород в платине, палладии, сталяхТвёрдое в газообразном - порошки, аэрозоли, в том числе дым, пыль, смог Газообразное в твёрдом - пористые материалы (например, кирпич, пемза)Жидкое - твёрдоеТвёрдые жидкости (например, стекло - твёрдое, но всё же жидкость)Может принимать разную форму и фиксировать её (например, посуда - разной формы и цвета)Жидкое - газообразноеЖидкие растворы (например, раствор диоксида углерода в воде)Жидкое в газообразном - аэрозоли жидкости в газе, в том числе туманы Газообразное в жидком - пены (например, мыльная пена)Газообразное - газообразноеГазовые растворы (смеси любых количеств и любого числа газов), напр. воздух.Гетерогенная система невозможна

В гомогенных смесях составные части нельзя обнаружить ни визуально, ни с помощью оптических приборов, поскольку вещества находятся в раздробленном состоянии на микроуровне. Гомогенными смесями являются смеси любых газов и истинные растворы, а также смеси некоторых жидкостей и твёрдых веществ, например сплавы.

В гетерогенных смесях либо визуально, либо с помощью оптических приборов можно различить области (агрегаты) разных веществ, разграниченные поверхностью раздела; каждая из этих областей внутри себя гомогенна. Такие области называются фазой.

Гомогенная смесь состоит из одной фазы, гетерогенная смесь состоит из двух или большего числа фаз. Гетерогенные смеси, в которых одна фаза в виде отдельных частиц распределена в другой, называются дисперсными системами. В таких системах различают дисперсионную среду (распределяющую среду) и дисперсную фазу (раздробленное в дисперсионной среде вещество).

Необходимо различать смеси и сложные вещества. Смеси в отличие от сложных веществ:

образуются с помощью физического процесса-смешивания чистых веществ;

свойства чистых веществ, из которых составлена смесь, остаются неизменными;

чистые вещества (простые и сложные) могут находиться в смеси в любом массовом соотношении.

Смеси образуются в результате смешения различных компонентов. Смешение является одним из наиболее распространенных процессов химической технологии и смежных с ней отраслей промышленности. Смешение может протекать:

под действием внешних сил, создаваемых рабочими органами смесительных машин;

в результате действия обоих факторов.

Смешение и перемешивание являются словами синонимами. Принято для твердых сыпучих и пастообразных материалов применять термин смешение. Для жидких сред и газообразных веществ используют термин перемешивание.

При смешении распределение частиц отдельных компонентов в смешиваемой среде случайно и происходит под действием множества сил, например сил тяжести, инерционных и различных гидродинамических и механических сил. При этом одновременно может происходить их дистанцирование и сегрегация, распределение в объеме и седиментация.

При перемешивании стремятся достигнуть совершенного взаимного распределения частиц. Совершенным, или полным, называют такое перемешивание, в результате которого бесконечно малые пробы смеси, отобранные в любом месте перемешиваемой системы, будут иметь одинаковый состав или одинаковую температуру. Поскольку достичь такого состояния не представляется возможным, на практике для качественной характеристики процесса смешения используют различные критерии качества смеси.

Готовые смеси чаще всего представлены растворами, эмульсиями, суспензиями, пастами, зернистыми композициями, газожидкостными смесями.

Растворы - гомогенная (однородная) смесь, образованная не менее чем двумя компонентами, один из которых называется растворителем, а другой растворимым веществом, это также система переменного состава, находящаяся в состоянии химического равновесия.

Эмульсии - дисперсные системы с жидкой дисперсионной средой и жидкой (реже газовой) дисперсной фазой.

Суспензии - грубодисперсные системы с твёрдой дисперсной фазой и жидкой дисперсионной средой.

Зернистые смеси - смеси, состоящие из большого количества зернистых частиц.

Газожидкостные смеси - многофазные дисперсные системы, физико-химические свойства которых зависят от объемного соотношения жидкой и газообразной фаз в смеси.

2.3 Способы перемешивания

Способы перемешивания в зависимости от физического состояния перемешиваемых компонентов.

1.Циркуляционное и поточное перемешивание.

При транспортировании жидкости по данным трубам с большой скоростью происходит интенсивное перемешивание - турбулизация потока. Поэтому для перемешивания жидкостей, содержащихся в аппарате, достаточно поставить рядом с аппаратом циркуляционный насос, который в течение некоторого времени будет перекачивать жидкость. Такое перемешивание называют циркуляционным. Эффективность перемешивания значительно возрастает, если жидкость в аппарате распыляется или вводится тангенциально. Интенсивность циркуляционного перемешивания зависит от расхода жидкости в циркуляционном насосе и объёма самого аппарата. Для смешивания чистых жидкостей, например, спирта-сырца и воды при ректификации спирта, используют струйные насосы. При этом перемешивание происходит в потоке и называется поточным. Для перемешивания невязких жидкостей в трубопроводах устраивают смесители, рабочий орган которых выполнен из последовательно установленных разно закрученных шнеков или турбинок. Поточное перемешивание осуществляется за счёт кинетической энергии потоков. Эти же устройства можно использовать для перемешивания жидкостей и газов.

В бродильных производствах применяют полочные смесители. На полках смешивается патока и вода. При этом холодная и горячая вода подаётся на разные полки по зонам, что позволяет поддерживать заданную температуру.

2.Гравитационное перемешивание

В подготовительных цехах химических производств часто требуется составить смесь из нескольких сухих сыпучих компонентов. При этом твердый сыпучий материал поднимается на определенную высоту и опускается под действием сил тяжести, описывая более или менее сложные траектории, перемешиваясь при этом. Наиболее распространены для этих целей шнековые смесители, рабочим органом которых является один или несколько шнеков. Хорошее перемешивание сыпучих материалов достигается во вращающихся барабанах. Ось вращения барабана наклонена к горизонту, и это обеспечивает перемещение материала не только в вертикальной плоскости, но и вдоль оси барабана. Барабаны вращаются, как правило, с малой частотой (5…10 об/мин). Для увеличения высоты подъёма материала на внутренней поверхности барабана устраивают специальные лопатки. Процессы перемешивания сыпучих материалов можно интенсифицировать, применяя механические вибрации, сопровождающие перемешивание шнеками, или вращающимися на валу лопатками. Такие устройства называют вибросмесителями.

3.Механическое перемешивание.

Механическое перемешивание является самым распространенным способом перемешивания в жидких средах. Оно производится при помощи специальных устройств - пропеллерных, лопастных, турбинных, якорных и рамных мешалок. Как правило, технические жидкости имеют различные характеристики, поэтому и механизмы для перемешивания отличаются по своим характеристикам и рабочим параметрам.

Пневматическое перемешивание

Пневматическое перемешивание сжатым инертным газом или воздухом используют, когда перемешиваемая жидкость отличается большой химической активностью и быстро разрушает механические мешалки. Перемешивание сжатым газом является малоинтенсивным процессом. Расход энергии при пневматическом перемешивании больше, чем при механическом. Пневматическое перемешивание не применяют для обработки летучих жидкостей в связи со значительными потерями перемешиваемого продукта. Перемешивание воздухом может сопровождаться окислением или осмолением веществ. Перемешивание сжатым газом проводят в аппаратах, снабженных специальными устройствами - барботером или центральной циркуляционной трубой. Барботер представляет собой расположенные по дну аппарата трубы с отверстиями, с помощью которых осуществляется барботаж газа через слой обрабатываемой жидкости. При циркуляционном (эрлифтном) перемешивании газ подают в циркуляционную трубу. Пузырьки газа увлекают за собой вверх по трубе жидкость, находящуюся в сосуде, которая затем опускается вниз в кольцевом пространстве между трубой и стенками аппарата, обеспечивая циркуляционное перемешивание жидкости.

Электромагнитное перемешивание

Данный тип перемешивания может быть использован в способах интенсификации технологических процессов в жидких металлах. Согласно предлагаемому способу перемешивание электропроводных расплавов в миксерах, печах осуществляют одновременным воздействием бегущего электромагнитного поля и одного или нескольких пульсирующих электромагнитных полей, расположенных в зоне бегущего поля, действующих по всей высоте столба расплава с боковой стороны миксера. Воздействующие на расплав поля создают его движение в одну или попеременно в одну и другую стороны на протяжении всего времени перемешивания в плоскости, параллельной боковой стороне миксера или печи. Посредством варьирования интенсивности пульсирующих электромагнитных полей на входе и выходе бегущего электромагнитного поля, можно изменять траекторию движения электропроводного расплава в процессе перемешивания. Электромагнитное перемешивание в открытых либо закрытых стеклянных сосудах осуществляют часто с помощью электромагнитных мешалок. Принцип функционирования этих мешалок основан на том, что укрепленный на оси вертикально расположенного мотора электромагнит при вращении с частотой до 24с-1 приводит в движение якорь из мягкого железа. Последний помещают в графитовую, стеклянную или полимерную ампулу, которую запаивают и помещают на дно аппарата. Электромагнитные мешалки применяют для перемешивания маловязких жидкостей (при гидрировании, электролизе, титровании и т.д.), при работе в глубоком вакууме и др. При необходимости изолировать реакционную смесь от действия воды и воздуха, а также для предотвращения утечки летучих веществ мешалки герметизируют резиновыми или корковыми пробками, жидкостными затворами (ртутными или глицериновыми), цилиндрическими стеклянными шлифами.

Недостатками данного способа являются:

) низкая эффективность перемешивания расплава в "мертвой зоне" между входом и выходом канала и в углах миксера, печи;

) устройства, реализующие способ, в частности тонкостенный канал или металлопрокат, имеют низкую надежность при воздействии на них высокотемпературных металлических расплавов.

Способы перемешивания в зависимости от организации самого процесса.

При периодическом перемешивании все отдельные стадии процесса протекают последовательно, в разное время. Характер изменения концентраций реагирующих веществ одинаков во всех точках реакционного объема, но различен по времени для одной и той же точки объема. В таком процессе продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры процесса изменяются во времени.

При непрерывном перемешивании все отдельные стадии процесса биохимического превращения вещества (подача реагирующих веществ, биохимические реакции, вывод конечного продукта) осуществляются параллельно, одновременно. Характер изменения концентраций реагирующих веществ в реакционном объеме различен в каждый момент времени в разных точках объема аппарата, но постоянен во времени для одной и той же точки объема. Параметры процесса постоянны во времени.

При полунепрерывном перемешивании один из реагентов поступает непрерывно, а другой - периодически. Возможны варианты, когда реагенты поступают периодически, а продукты реакции выгружаются непрерывно. Данный способ применяется, когда изменение скорости подачи реагентов позволяет регулировать скорость процесса.

сортирование смесь перемешивание мешалка

3. Перемешивающие устройства

Механические перемешивающие устройства состоят из трех основных частей: собственно мешалки, вала и привода. Мешалка является рабочим элементом устройства, закрепляемым на вертикальном, горизонтальном или наклонном валу. Привод может быть осуществлен либо непосредственно от электродвигателя (для быстроходных мешалок), либо через редуктор или клиноременную передачу. По устройству лопастей различают мешалки лопастные, листовые, пропеллерные, турбинные и специальные. По типу создаваемого мешалкой потока жидкости в аппарате различают мешалки, обеспечивающие преимущественно тангенциальное, радиальное и осевое течения. При тангенциальном течении жидкость в аппарате движется преимущественно по концентрическим окружностям, параллельным плоскости вращения мешалки. Перемешивание происходит за счет вихрей, возникающих на кромках мешалки. Качество перемешивания будет наихудшим, когда скорость вращения жидкости равна скорости вращения мешалки.

Радиальное течение характеризуется направленным движением жидкости от мешалки к стенкам аппарата перпендикулярно оси вращения мешалки. Осевое течение жидкости направлено параллельно оси вращения мешалки определяют области их применения.

При высоких скоростях вращения мешалок перемешиваемая жидкость вовлекается в круговое движение и вокруг вала образуется воронка, глубина которой увеличивается с возрастанием числа оборотов и уменьшением плотности и вязкости среды. Для предотвращения образования воронки в аппарате помещают отражательные перегородки, которые, кроме того, способствуют возникновению вихрей и увеличению турбулентности системы. Образование воронки можно предотвратить и при полном заполнении жидкостью аппарата, т. е. при отсутствии воздушной прослойки между перемешиваемой жидкостью и крышкой аппарата, а также при установке вала мешалки эксцентрично к оси аппарата или применении аппарата прямоугольного сечения. Помимо этого, отражательные перегородки устанавливают во всех случаях при перемешивании в системах газ-жидкость. Применение отражательных перегородок, а также эксцентричное или наклонное расположение вала мешалки приводит к увеличению потребляемой ею мощности.

3.1 Лопастные мешалки

Лопастными мешалками называются устройства, состоящие из двух или большего числа лопастей прямоугольного сечения, закрепленных на вращающемся вертикальном или наклонном валу (рис. 1). К лопастным мешалкам относятся также и некоторые мешалки специального назначения: якорные, рамные и листовые. Вследствие незначительности осевого потока лопастные мешалки перемешивают только те слои жидкости, которые находятся в непосредственной близости от лопастей мешалки.

Развитие турбулентности в объеме перемешиваемой жидкости происходит медленно, циркуляция жидкости невелика. Поэтому лопастные мешалки применяют для перемешивания жидкостей, вязкость которых не превышает 103 мн. сек/м 2. Эти мешалки непригодны для перемешивания в протоке, например в аппаратах непрерывного действия. Некоторое увеличение осевого потока жидкости достигается при наклоне лопастей под углом 30-45° к оси вала. Такая мешалка способна удерживать во взвешенном состоянии частицы, скорость осаждения которых невелика. С целью увеличения турбулентности среды при перемешивании лопастными мешалками в аппаратах с большим отношением высоты к диаметру используют многорядные двухлопастные мешалки с установкой на валу нескольких рядов мешалок, повернутых друг относительно друга на 90°. Расстояние между отдельными рядами выбирают в пределах (0,3-0,8d) , где d - диаметр мешалки, в зависимости от вязкости перемешиваемой среды.

Для перемешивания жидкостей вязкостью не более 104 мн. сек/м 2, а также для перемешивания в аппаратах, обогреваемых с помощью рубашки или внутренних змеевиков, в тех случаях, когда возможно выпадение осадка или загрязнение теплопередающей поверхности, применяют якорные (рис.2) или рамные (рис.3) мешалки. Они имеют форму, соответствующую внутренней форме аппарата, и диаметр, близкий к внутреннему диаметру аппарата или змеевика. При вращении эти мешалки очищают стенки и дно аппарата от налипающих загрязнений.

Достоинства лопастных мешалок:

) простота устройства и дешевизна изготовления;

) вполне удовлетворительное перемешивание умеренно вязких жидкостей.

Недостатки:

) малая интенсивность перемешивания вязких жидкостей;

) непригодность для перемешивания легко расслаивающихся веществ.

Основные области применения лопастных мешалок:

) перемешивание жидкостей небольшой вязкости;

) растворение и суспендирование твердых веществ;

) грубое смешение жидкостей.

Рисунок 1 - Лопастная мешалка

Рисунок 2 - Якорная мешалка

Рисунок 3 - Рамная мешалка

3.2 Листовые мешалки

Листовые мешалки (рис.4) имеют лопасти большей ширины, чем у лопастных мешалок, и относятся к мешалкам, обеспечивающим тангенциальное течение перемешиваемой среды. Кроме чисто тангенциального потока, который является преобладающим, верхние и нижние кромки мешалки создают вихревые потоки, подобные тем, которые возникают при обтекании жидкостью плоской пластины с острыми краями. При больших скоростях вращения листовой мешалки на тангенциальный поток накладывается радиальное течение, вызванное центробежными силами. Листовые мешалки применяют для перемешивания маловязких жидкостей (вязкостью менее 50 мн. сек/м 2), интенсификации процессов теплообмена, при растворении. Для процессов растворения используют листовые мешалки с отверстиями в лопастях. При вращении такой мешалки на выходе из отверстий образуются струи, способствующие растворению твердых материалов. Основные размеры лопастных мешалок изменяются в зависимости от вязкости среды. Обычно для лопастных мешалок принимают следующие соотношения размеров: диаметр мешалки d = (0,66-0,9)D (D- внутренний диаметр аппарата), ширина лопасти мешалки b = (0,1 - 0,2)D, высота уровня жидкости в сосуде H = (0,8-1,3)D, расстояние от мешалки до дна сосуда h d 0,3D. Для листовых мешалок d = (0,3-0,5) D, b = (0,5-1,0)D, h = (0,2-0,5) D. Окружная скорость лопастных и листовых мешалок в зависимости от вязкости перемешиваемой среды может изменяться в широких пределах (от 0,5 - 5,0 сек-1), причем с увеличением вязкости и ширины лопасти скорость вращения мешалки уменьшается. При высоких скоростях вращения лопастных мешалок в аппарате устанавливают отражательные перегородки. Листовые мешалки, как правило, без отражательных перегородок не применяют.

Рисунок 4 - Листовая мешалка

3.3 Пропеллерные мешалки

Рабочей частью пропеллерной мешалки является пропеллер (рис.5) - устройство с несколькими фасонными лопастями, изогнутыми по профилю гребного винта. Наибольшее распространение получили трехлопастные пропеллеры. На валу мешалки, который может быть расположен вертикально, горизонтально или наклонно, в зависимости от высоты слоя жидкости устанавливают один или несколько пропеллеров. Вследствие более обтекаемой формы пропеллерные мешалки при одинаковом числе Рейнольдса потребляют меньшую мощность, чем мешалки прочих типов.

Рисунок 5 - Пропеллерная мешалка

Корпус аппарата

Пропеллер

Диффузор

Рисунок 6 - Пропеллерная мешалка с диффузором:

Для улучшения перемешивания больших объемов жидкостей и организации направленного течения жидкости (при большом отношении высоты к диаметру аппарата) в сосудах устанавливают направляющий аппарат, или диффузор (рис. 6). Диффузор представляет собой короткий цилиндрический или конический стакан, внутри которого помещают мешалку. При больших скоростях вращения мешалки в отсутствие диффузора в аппарате устанавливают отражательные перегородки. Пропеллерные мешалки применяют для перемешивания жидкостей вязкостью не более 2.103 мн. сек/м 2, для растворения, образования взвесей, быстрого перемешивания, образования маловязких эмульсий и гомогенизации больших объемов жидкости. Для пропеллерных мешалок принимают следующие соотношения основных размеров: диаметр мешалки d= (0,2-0,5) D, шаг винта s=(1,0- 3,0) D, расстояние от мешалки до дна сосуда h=(0,5-1,0) d, высота уровня жидкости в сосуде Н=(0,8-1,2)D. Число оборотов пропеллерных мешалок достигает 40 в секунду, окружная скорость - 15 м/сек.

Достоинства пропеллерных мешалок:

) интенсивное перемешивание;

) умеренный расход энергии, даже при значительном числе оборотов;

) невысокая стоимость.

Недостатки:

) малая эффективность перемешивания вязких жидкостей;

) ограниченный объем интенсивно перемешиваемой жидкости.

Пропеллерные мешалки применяются главным образом для следующих, целей:

) интенсивное перемешивание маловязких жидкостей;

) приготовление суспензий и эмульсий;

) взмучивание осадков, содержащих до 10% твердой фазы, состоящей из частиц размером до 0,15 мм.

3.4 Турбинные мешалки

Эти мешалки имеют форму колес водяных турбин с плоскими, наклонными или криволинейными лопатками, укрепленными, как правило, на вертикальном валу (рис. 7). В аппаратах с турбинными мешалками создаются преимущественно радиальные потоки жидкости. При работе турбинных мешалок с большим числом оборотов наряду с радиальным потоком возможно возникновение тангенциального (кругового) течения содержимого аппарата и образование воронки. В этом случае в аппарате устанавливают отражательные перегородки. Закрытые турбинные мешалки (рис. 7) в отличие от открытых (рис. 7 а, б, в) создают более четко выраженный радиальный поток. Закрытые мешалки имеют два диска с отверстиями в центре для прохода жидкости; диски сверху и снизу привариваются к плоским лопастям. Жидкость поступает в мешалку параллельно оси вала, выбрасывается мешалкой в радиальном направлении и достигает наиболее удаленных точек аппарата. Турбинные мешалки обеспечивают интенсивное перемешивание во всем объеме аппарата. При больших значениях отношения высоты к диаметру аппарата применяют многорядные турбинные мешалки. Мощность, потребляемая турбинными мешалками, работающими в аппаратах с отражательными перегородками, при турбулентном режиме перемешивания практически не зависит от вязкости среды. Поэтому мешалки этого типа могут применяться для смесей, вязкость которых во время перемешивания изменяется.

Турбинные мешалки широко применяют для образования взвесей (размер частиц для закрытых мешалок может достигать 25 мм.), растворения, абсорбции газов и интенсификации теплообмена. Для перемешивания в больших объемах (например, при гомогенизации жидкостей в хранилищах, объем которых достигает 2500 м3 и более) турбинные мешалки менее пригодны, чем пропеллерные мешалки или сопла. В зависимости от области применения турбинные мешалки обычно имеют диаметр d = (0,15-0,65) D при отношении высоты уровня жидкости к диаметру аппарата не более двух. При больших значениях этого отношения используют многорядные мешалки. Число оборотов мешалки колеблется в пределах 2-5 в секунду, а окружная скорость составляет 3-8 м/сек.

а - открытая с прямыми лопатками

б - открытая криволинейными лопатками

в - открытая с наклонными лопатками

г - закрытая с направляющим аппаратом

Турбинная мешалка

Направляющий аппарат

Рисунок 7 - Турбинная мешалка

Достоинства турбинных мешалок:

) быстрота перемешивания и растворения;

) эффективное перемешивание вязких жидкостей;

) пригодность для непрерывных процессов.

Недостатком турбинных мешалок является сравнительная сложность и высокая стоимость изготовления. Области применения турбинных мешалок:

) интенсивное перемешивание и смешивание жидкостей различной вязкости, которая может изменяться в широких пределах (мешалки открытого типа до 105 спз., мешалки закрытого типа до 5 * 105 спз);

) тонкое диспергирование и быстрое растворение;

) взмучивание осадков в жидкостях, содержащих 60% и более твердой фазы (для открытых мешалок - до 60%); допустимые размеры твердых частиц: до 1,5 мм для открытых мешалок, до 25 мм для закрытых мешалок.

3.5 Специальные мешалки

К этой группе относятся мешалки, имеющие более ограниченное применение, чем мешалки рассмотренных выше типов.

Барабанные мешалки (рис. 8) состоят из двух цилиндрических колец, соединенных между собой вертикальными лопастями прямоугольного сечения. Высота мешалки составляет 1,5-1,6 ее диаметра. Мешалки этой конструкции создают значительный осевой поток и применяются (при отношении высоты столба жидкости в аппарате к диаметру барабана не менее 10) для проведения газожидкостных реакций, получения эмульсий и взмучивания осадков.

Рисунок 8 - Барабанная мешалка.

Дисковые мешалки (рис.9) представляют собой один или несколько гладких дисков, вращающихся с большой скоростью на вертикальном валу. Течение жидкости в аппарате происходит в тангенциальном направлении за счет трения жидкости о диск, причем сужающиеся диски создают также осевой поток. Иногда края диска делают зубчатыми. Диаметр диска составляет 0,1-0,15 диаметра аппарата. Окружная скорость равна 35 м/сек, что при небольших размерах диска соответствует очень высоким числам оборотов. Потребление энергии колеблется от 0,5 кВт для маловязких сред до 20 кВт для вязких смесей. Дисковые мешалки применяются для перемешивания жидкостей в объемах до 4 м3.

Рисунок 9 - Дисковая мешалка

Вибрационные мешалки имеют вал с закрепленными на нем одним или несколькими перфорированными дисками (рис. 10). Диски совершают возвратно-поступательное движение, при котором достигается интенсивное перемешивание содержимого аппарата. Энергия, потребляемая мешалками этого типа, невелика. Они используются для перемешивания жидких смесей и суспензий преимущественно в аппаратах, работающих под давлением. Время, необходимое для растворения, гомогенизации, диспергирования при использовании вибрационных мешалок, значительно сокращается. Поверхность жидкости при перемешивании этими мешалками остается спокойной, воронки не образуется. Вибрационные мешалки изготовляются диаметром до 300 мм и применяются в аппаратах емкостью не более 3 м3.

Рисунок 10 - Устройство дисков вибрационных мешалок

3.6 Выбор мешалки

Выбор того или иного типа мешалок определяется целевым назначением перемешивающих устройств и конкретными условиями протекания процесса. Какие-либо четкие рекомендации по этому вопросу пока не могут быть сформулированы. Поэтому при выборе того или иного типа перемешивающих устройств можно использовать ориентировочные характеристики условий целесообразного применения различных типов мешалок, приведенных в таблице 2.

Таблица 2 - Ориентировочные характеристики для выбора мешалки

Тип мешалокОбъем жидкости, перемешиваемой одной мешалкой, м3Содержание твердой фазы при суспенди ровании, %Динамическая вязкость перемешиваемой жидкости, кг/(м*с)Окружная скорость мешалки, м/сЧастота вращения мешалкиЛопастные<1,5<5< 0,011,7-5,00,3-1,35Пропеллерные<4,0<10<0,064,5-17,08,5-20,0Турбинные: - Открытые - Закрытые <10,0 <20,0 <60 60 и больше <1,00 <5,00 1,8-13,0 2,1-8,0 0,7-10,0 1,7-6,0Специальные<20,0<75< 5,006,0-30,01,7-25,0Заключение

В процессе перемешивания происходит тесное соприкосновение частиц и непрерывное обновление поверхности взаимодействия веществ. Вследствие этого при перемешивание значительно ускоряются процессы массообменная, например такие, как растворение в жидкости твердых веществ, протекание большинства химических реакций и процесс теплообмена. Перемешивание способствует процессу ускорения абсорбции, выпаривания и основных процессов химических технологий.

Перемешивание - это процесс многократного перемещения частиц неоднородной текучей среды друг относительно друга во всем объеме емкости или аппарата, происходящий за счет импульсов, среде с мешалкой, струей жидкости или газа. Перемешивание с помощью мешалки - обязательное условие успешного проведения многих самых разнообразных технологических операций. На производстве перемешивание с помощью мешалки осуществляют в целях:

а) обеспечения равномерного распределения и дробления, измельчения до заданной дисперсности (диспергирование) газа в жидкости или жидкости в жидкости, а также равномерного распределения твердых частиц в объеме жидкости;

б) интенсификации нагревания или охлаждения обрабатываемых масс в емкости или аппарате, а также обеспечения равномерного распределения температуры в перемешиваемой емкости или аппарате;

в) интенсификации массообмена в перемешиваемой среде, а также равномерного распределения растворенного вещества в перемешиваемой массе.

Таким образом, перемешивание с помощью механической мешалки оказывает решающее влияние и на скорость различных процессов химических превращений, поскольку в промышленных условиях скорость этих процессов определяется не только химической кинетикой, а в значительной мере условиями передачи теплоты и массы.

В зависимости от целей и условий проведения процесса применяют емкости и аппараты с перемешивающими устройствами различных конструкций.

Процесс перемешивания с помощью мешалки широко используется во многих отраслях промышленности в таких как химическая, лакокрасочная, энергетика, нефтяная, асфальтовая, пищевая и других для изготовления и приготовления суспензий, взвесей, растворов, реагентов и эмульсий, проведение реакций, гомогенизирование, суспендирование, растворение, смешение, взмучивание и т.п.

Список использованных источников

1.#"justify">2.#"justify">. Кафаров В.В., Дорохов И.Н., Арутюнов С.Ю., Системный анализ процессов химической технологии. М.: Химия, 1988. - 214-298 с.

. #"justify">. #"center">Приложение А

Таблица 1 - Варианты смеси веществ в разных агрегатных состояниях

Агрегатное состояние составных частей (до образования смеси)Гомогенная смесь (гомогенная система)Гетерогенная смесь (гетерогенная система)Твёрдое - твёрдоеТвёрдые растворы, сплавы (например латунь, бронза)Горные породы (например гранит, минералосодержащие руды и др.)Жидкое - жидкоеЖидкие растворы (например, уксус - раствор уксусной кислоты в воде) Двух- и многослойные жидкие системы, эмульсии (например, молоко - капли жидкого жира в воде)Твёрдое - жидкоеЖидкие растворы (например, водные растворы солей)Твёрдое в жидком - суспензии или взвеси (например, частицы глины в воде, коллоидные растворы) Жидкое в твёрдом - жидкость в пористых телах (например, почвы, грунты)Твёрдое - газообразноеХемосорбированный водород в платине, палладии, сталяхТвёрдое в газообразном - порошки, аэрозоли, в том числе дым, пыль, смог Газообразное в твёрдом - пористые материалы (например, кирпич, пемза)Жидкое - твёрдоеТвёрдые жидкости (например, стекло - твёрдое, но всё же жидкость)Может принимать разную форму и фиксировать её (например, посуда - разной формы и цвета)Жидкое - газообразноеЖидкие растворы (например, раствор диоксида углерода в воде)Жидкое в газообразном - аэрозоли жидкости в газе, в том числе туманы Газообразное в жидком - пены (например, мыльная пена)Газообразное - газообразноеГазовые растворы (смеси любых количеств и любого числа газов), напр. воздух.Гетерогенная система невозможнаПриложение Б

Пример расчета материальных потоков при смешивании растворов

Задача. Смешивают 50 мл 45 % -го раствора NaOH (r = 1,480 г/мл) и 70 мл 1,8Н раствора Na2CO3 (r = 1,180 г/мл). Рассчитать материальный поток.

Решение.

моль.

моль

моль

моль/л

моль/л

моль/кг

моль/кг

моль∙экв/л

моль∙экв/л

Наименование компонентаМасса, гn, мольω i , % χ i , %NaOH 33,3000,83321,311,8Na 2 CO 3 13,3560,1268,51,8H 2 O 109,9446,10870,286,4Итого156,6007,067100100

Материальный баланс смешивания растворов

загруженополученонаименование компонентамасса, г.наименование компонентамасса, г.техническаяв 100% исчислениятехническаяв 100% исчисленияА) Сырье, в том числе: 1) р-р NaOH H


Лекция 1.

Классификация основных процессов химической технологии может быть проведена на основе различных признаков.

В зависимости от основных законов, определяющих скорость протекания процессов, различают:

1. Гидромеханические процессы, скорость которых определяется законами гидродинамики науки о движении жидкостей и газов. К этим процессам относятся перемещение жидкостей, сжатие и перемещение газов, разделение жидких и газовых неоднородных систем в поле сил тяжести (отстаивание), в поле центробежных сил (центрифугирование), а также под действием разности давлений при движении через пористый слой (фильтрование) и перемешивание жидкостей

2. Тепловые процессы, протекающие со скоростью, определяемой законами теплопередачи науки о способах распространения тепла. Такими процессами являются нагревание, охлаждение, выпаривание и конденсация паров. К тепловым процессам могут быть отнесены и процессы охлаждения до температур более низких, чем температура окружающей среды (процессы умеренного и глубокого охлаждения). Однако вследствие многих специфических особенностей эти процессы выделены ниже в отдельную группу холодильных процессов.

Скорость тепловых процессов в значительной степени зависит от гидродинамнческнх условий (скоростей, режимов течения), при которых осуществляется перенос тепла между обменивающимися теплом средами.

3. Массообмснные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение и экстракция из пористых твердых тел, кристаллизация, адсорбция, сушка, мембранные процессы. Протекание процессов массообмена тесно связано с гидродинамическиими условиями в фазах и на границе их раздела и часто - с сопутствующими массообмену процессами теплообмена.

4. Химические (реакционные) процессы протекают со скоростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Общие закономерности протекании химических процессов и принципы устройства реакторов рассматриваются в специальной литературе".

5. Механические процессы, описываемые законами механики твердых тел. Эти процессы применяются в основном для подготовки исходных твердых материалов и обработки конечных твердых продуктов, а также для транспортирования кусковых и сыпучих материалов, К механическим процессам относится измельчение, транспортирование, сортировка (классификация) и смешение твердых веществ.

Особую группу механических процессов составляют процессы переработки химических продуктов в изделия прессование, литье, экструзия и др. Эти процессы и машины для их проведения специфичны для производств синтетических материалов и рассматриваются в специальных курсах.

По способу организации основные процессы химической технологии делятся на периодические и непрерывные .

Периодические процессы проводятся в аппаратах, в которые через определенные промежутки времени загружаются исходные материалы; после их обработки из этих аппаратов выгружаются конечные продукты. По окончании разгрузки аппарата и его повторной загрузки процесс повторяется снова. Таким образом, периодический процесс характеризуется тем, что все его стадии протекают в одном месте (в одном аппарате), но в разное время.

Непрерывные процессы осуществляются в проточных аппаратах. Поступление исходных материалов в аппарат и выгрузка конечных продуктов производится одновременно и непрерывно. Следовательно, непрерывный процесс характеризуется тем, что все его стадии протекают одновременно, но разобщены в пространстве, т. е. осуществляется в различных частях одного аппарата или же в различных аппаратах, составляющих данную установку.

Известны также комбинированные процессы. К ним относятся непрерывные процессы, отдельные стадии которых проводятся периодически, либо периодические процессы, одна или несколько стадий которых протекают непрерывно.

Основные преимущества непрерывных процессов по сравнению с периодическими следующие: I) нет перерывов в выпуске конечных продуктов, т. е. отсутствуют затраты времени на загрузку аппаратуры исходными материалами и выгрузку из нее продукции; 2) более легкое автоматическое регулирование и возможность более полной механизации; 3) устойчивость режимов проведения и соответственно большая стабильность качества получаемых продуктов; 4) большая компактность оборудования, что сокращает капитальные затраты и эксплуатационные расходы (на ремонты и пр.); 5) более полное использование подводимого (или отводимого) тепла при отсутствии перерывов в работе аппаратов; возможность использования (рекуперации) отходящего тепла.

Благодаря указанным достоинствам непрерывных процессов при их проведении увеличивается производительность аппаратуры, уменьшается потребность в обслуживающем персонале, улучшаются условия труда и повышается качество продукции. По этим причинам в химических производствах осуществляют преимущественно непрерывные процессы.

Периодические процессы сохраняют свое значение в производствах небольшого масштаба (в том числе в опытных), где их применение позволяет достичь большой гибкости в использовании оборудования при меньших капитальных затратах.

Процессы могут быть также классифицированы в зависимости от изменения их параметров (скоростей, температур, концентраций и др.) во времени. По этому признаку процессы делятся на установившиеся (стационарные) и неустановившиеся (нестационарные, или переходные).

В установившихся процессах значения каждого из параметров, характеризующих процесс, постоянны во времени, а в неустановившихся переменны, т. е. являются функциями не только положения каждой точки в пространстве, но и времени.

Непрерывные процессы отличаются от периодических по распределению времени пребывания частиц среды в аппарате. В периодически действующем аппарате все частицы среды находятся одинаковое время, в то время как в непрерывно действующем аппарате времена пребывания их могут значительно различаться. По распределению времен пребывания и связанных с ним изменений во времени других факторов, влияющих на процесс (температур, концентраций н др.), различают две теоретических (предельных) модели аппаратов непрерывного действия: идеального вытеснения и идеального смешения .

В аппаратах идеального вытеснения все частицы движутся в заданном направлении, не перемешиваясь с движущимися впереди и сзади частицами и полностью вытесняя находящиеся впереди частицы потока. Все частицы равномерно распределены по площади поперечного сечения аппарата и действуют при движении подобно твердому поршню. Время пребывания всех частиц в аппарате идеального вытеснения одинаково.

В аппаратах идеального смешении поступающие частицы сразу же полностью перемешиваются с находящимися там частицами, т. е. равномерно распределяются в объеме аппарата. В результате во всех точках объема мгновенно выравниваются значения параметров, характеризующих процесс. Время пребывания частиц в аппарате идеального смешения неодинаково.

Реальные непрерывно действующие аппараты представляют собой аппараты промежуточного типа. В них время пребывания частиц распределяется несколько более равномерно, чем в аппаратах идеального смешения, но никогда не выравнивается, как в аппаратах идеального вытеснения.

В зависимости от закономерностей , характеризующих протекание, процессы химической технологии делят на пять основных групп.

1. Механические процессы , скорость которых связана с законами физики твёрдого тела. К ним относятся: измельчение, классификация, дозирование и смешение твёрдых сыпучих материалов.

2. Гидромеханические процессы , скорость протекания которых определяется законами гидромеханики. К ним относятся: сжатие и перемещение газов, перемещения жидкостей, твердых материалов, осаждение, фильтрование, перемешивание в жидкой фазе, псевдоожижение и т. п.

3. Тепловые процессы , скорость протекания которых определяется законами теплопередачи. К ним следует отнести процессы: нагревания, выпаривания, охлаждения (естественного и искусственного), конденсации и кипения.

4. Массообменные (диффузионные) процессы , интенсивностькоторых определяется скоростью перехода вещества из одной фазы в другую, т.е. законами массопередачи. К диффузионным процессам относятся: абсорбция, ректификация, экстракция, кристаллизация, адсорбция, сушка и др.

5. Химические процессы связаны с превращением веществ и изменением их химических свойств. Скорость этих процессов определяется закономерностями химической кинетики.

В соответствии с перечисленным делением процессов химические аппараты классифицируют следующим образом:

– измельчающие и классифицирующие машины;

– гидромеханические, тепловые, массообменныеаппараты;

– оборудование для осуществления химических превращений – реакторы.

По организационно-технической структуре процессы делятся на периодические и непрерывные.

В периодическом процессе отдельные стадии (операции) осуществляются в одном месте (аппарате, машине), но в разное время (рис.1.1). В непрерывном процессе (рис.1.2) отдельные стадии осуществляются одновременно, но в разных местах (аппаратах или машинах).

Непрерывные процессы имеют значительные преимущества перед периодическими, состоящими ввозможности специализации аппаратуры для каждой стадии, улучшения качества продукта, стабилизации процесса во времени, простоте регулирования, возможности автоматизации и т.п.

При проведении процессов в любом из перечисленных аппаратов изменяются значения параметров перерабатываемых материалов. Параметрами, характеризующими процесс, являются давление, температура, концентрация, плотность, скорость потока, энтальпия и др.

В зависимости от характера движения потоков и изменения параметров веществ, поступающих в аппарат, все аппараты могут быть разделены на три группы: аппараты идеального (полного ) смешения , аппараты идеального (полного ) вытеснения и аппараты промежуточного типа .

Наиболее удобно продемонстрировать особенности потока различной структуры на примере теплообменников непрерывного действия различной конструкции. На рис.1.3,а представлена схема теплообменника, работающего по принципу идеального вытеснения. Принимается, что в этом аппарате происходит «поршневое» течение потока без перемешивания. Температура одного из теплоносителй меняется по длине аппарата от начальной температуры до конечной в результате того, что протекающие через аппарат последующие объёмы жидкости не смешиваются с предыдущими, полностью вытесняя их. Температура второго теплоносителя принята постоянной (конденсирующийся пар).

В аппарате идеального смешения последующие и предыдущие объёмы жидкости идеально перемешаны, температура жидкости в аппарате постоянна и равна конечной (рис. 1.3,б).

В реальных аппаратах не могут быть обеспечены ни условия идеального смешения, ни идеального вытеснения. На практике можно достигнуть только достаточно близкого приближения к этим схемам, поэтому реальные аппараты – это аппараты промежуточного типа (рис. 1.3,в).

Рис. 1.1. Аппарат для проведения периодического процесса:

1 –сырье; 2 –готовый продукт;3 –пар;4 –конденсат;5 –охлаждающая вода

Рис. 1.2. Аппарат для проведения непрерывного процесса:

1– теплообменник-нагреватель; 2 – аппарат с мешалкой; 3 – теплообменник-холодильник; I –сырье; II –готовый продукт;III –пар;IV –конденсат;
V –охлаждающая вода

Рис. 1.3. Изменение температуры при нагревании жидкости в аппаратах различных типов: а – полного вытеснения; б –полного смешения; в – промежуточного типа

Движущая сила рассматриваемого процесса нагревания жидкости для любого элемента аппарата представляет разность между температурами греющего пара и нагреваемой жидкости.

Разница в протекании процессов в каждом из типов аппаратов становится особенно ясной, если рассмотреть, как изменяется движущая сила процесса в каждом из типов аппаратов. Из сравнения графиков следует, что максимальная движущая сила имеет место в аппаратах полного вытеснения, минимальная –в аппаратах полного смешения.

Следует отметить, что движущая сила процессов в непрерывно действующих аппаратах идеального смешения может быть значительноувеличена путём разделения рабочего объёма аппарата на ряд секций.

Если объём аппарата идеального смешения разделить на n аппаратов и в них провести процесс, то движущая сила увеличится (рис. 1.4).

При увеличении числа секций в аппаратах идеального смешения значение движущей силы приближается к её значению в аппаратах идеального вытеснения, и при большом числе секций (порядка 8–12) движущие силы в аппаратах того и другого типа становятся приблизительно одинаковыми.

Рис. 1.4. Изменение движущей силы процесса при секционировании


ЗНАЧЕНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ИХ КЛАССИФИКАЦИЯ

В производстве промышленной продукции широко используются физические процессы химической техноло­гии - дробление сырья, перемещение жидкостей и газов по трубопроводам, нагревание и охлаждение, разделение однородных и неоднородных систем и т. п.

На любой стадии производства (подготовительной, основной или завершающей) физические процессы вы­полняют вспомогательную или основную функцию.

Например, на стадии подготовки нефти к переработке используются процессы перемещения нефти по трубопро­водам, процессы разделения неоднородных систем (уда­ление из нефти песка, глины, воды и попутного газа от­стаиванием, электрообезвоживанием), процессы нагрева­ния нефти до температуры кипения. На основной стадии перегонки нефти на фракции имеют место дистилляция, ректификация, охлаждение и конденсация паров. На за­вершающей стадии (очистке нефтепродуктов) исполь­зуются сорбционные процессы удаления примесей с по­мощью твердых и жидких поглотителей.

Подобные примеры широкого использования физиче­ских процессов характерны для любой отрасли промыш­ленности. Так, в добывающей промышленности - это дробление и измельчение минерального сырья, удаление пустой породы флотацией, электромагнитной или иной сепарацией, в металлургии - тепловые и массообменные процессы (нагревание шихты, плавление и кристаллиза­ция металла, термическая и химико-термическая обра­ботка стали), в машиностроении и радиоэлектронике - конденсация паров расплавленных металлов на поверх­ность деталей и изделий, в производстве строительных и лакокрасочных материалов, пищевых продуктов - тон­кое и сверхтонкое измельчение, сушка и т. д.

Большое значение приобретают физические процессы в природоохранных мероприятиях по чистке сточных вод и газовых выбросов от вредных примесей, а также по ре­куперации промышленных и бытовых отходов (сухая и мокрая очистка газов, безреагентные методы перера­ботки производственных стоков и т. п.).

Физические процессы химической технологии подраз­деляются на физико-механические (дробление, измельче­ние), гидромеханические (перемещение жидкостей и газов, разделение неоднородных систем), тепловые (нагревание, охлаждение и конденсация паров) и массообменные (со­рбция, кристаллизация, сушка, дистилляция, ректифика­ция, экстракция, разделение однородных систем с по­мощью полупроницаемых мембран).

ВИДЫ ФИЗИЧЕСКИХ ПРОЦЕССОВ

Физико-механические процессы

Измельчение. В промышленности для интенси­фикации химических взаимодействий, особенно для ге­терогенных и твердофазных процессов производства строительных материалов, металлов, минеральных удо­брений и т. д., чрезвычайно важно увеличение поверхно­сти контакта фаз, достигаемое путем механического из­мельчения. Процессы измельчения сводятся к разруше­нию первоначальной структуры вещества путем разда­вливания, раскалывания, истирания или удара. В зависи­мости от механических свойств исходных материалов и начальных размеров кусков применяются различные типы воздействия. Например, твердые и хрупкие веще­ства измельчают раскалыванием, ударом, а пластичные вещества хорошо поддаются истиранию. Чем тверже и пластичнее материал, тем его труднее измельчить.

Измельчение может осуществляться как сухим, так и мокрым способом - в воде или других жидкостях, что исключает пылеобразование и повышает эффективность процесса. Измельчающие машины подразделяют на дро­билки крупного, среднего и мелкого дробления, а также мельницы тонкого и сверхтонкого измельчения. Машины для измельчения работают в открытом и замкнутом ци­клах; последний позволяет значительно снизить расход энергии на измельчение и повысить эффективность про­цесса.

Тепловые процессы

Перенос энергии в форме теплоты, происходящий ме­жду телами, имеющими различную температуру, назы­вается теплообменом. Движущей силой любого процесса теплообмена является разность температур между более нагретым и менее нагретым телом. Существуют три принципиально различных способа передачи теплоты: теплопроводность, конвекция и тепловое излучение.

Теплопроводность - перенос теплоты вслед­ствие беспорядочного теплового движения атомов и мо­лекул, непосредственно соприкасающихся друг с другом. В твердых телах теплопроводность является основным видом переноса теплоты, в то время как в газах и жидко­стях процесс распространения теплоты осуществляется также и другими способами. На коэффициент теплопро­водности влияет природа и структура вещества, темпера­тура и влажность материалов и т. д.; наивысшей тепло­проводностью отличаются металлы: сталь - 4,6, алюми­ний-210, медь - 380 Вт/(м К), а наиболее низкой - вода - 0,6 Вт/(м К). Воздух имеет теплопроводность 0,03 Вт/(м К).

Конвекция - процесс переноса теплоты вслед­ствие движения и перемешивания макроскопических ча­стей газов или жидкостей. Перенос теплоты может осу­ществляться путем естественной (свободной) конвекции, обусловленной разностью плотностей в различных точ­ках объема жидкости или газа, возникающей вследствие разности температур в этих точках, а также вынужден­ной конвекции при механическом перемещении всего объема газа или жидкости.

Тепловое излучение - процесс распростране­ния электромагнитных колебаний с различными длинами волн, который возникает вследствие теплового движения атомов и молекул излучающего тела. Эти тела испу­скают электромагнитную энергию, которая поглощается другими, более холодными телами и превращается в теплоту.

В реальных условиях теплота передается не каким-ли­бо одним из указанных выше способов, а комбиниро­ванным путем, который называется теплопередачей. В не­прерывно действующих аппаратах теплообмен протекает в стационарном (установившемся) режиме, в периодиче­ских - в нестационарном. Эффективность теплопередачи зависит от коэффициента, который показывает, какое ко­личество теплоты переходит в единицу времени от более нагретой к менее нагретой среде через разделяющую их плоскую стенку площадью 1 м 2 при средней разности температур между теплоносителями в 1°. Средняя раз­ность температур зависит от направления движения те­плоносителей. Выбор правильного направления движения тепловых потоков (прямоток, противоток, перекрестный ток) значительно сказывается на эффективности процесса теплопередачи и экономии теплоты.

Главными тепловыми процессами в промышленности являются процессы нагревания водяным паром, топочны­ми газами, теплоносителями и электрическим током, а также процессы охлаждения, в том числе ниже - 200 °С.

Массообменные процессы

Большое значение в химической технологии имеют массообменные процессы, основанные на переходе одно­го или нескольких веществ из одной фазы в другую. В промышленности в основном применяют процессы массопередачи между газовой (паровой) и жидкой, между газовой и твердой, между твердой и жидкой, а также ме­жду двумя жидкими фазами. К таким процессам отно­сятся: абсорбция, адсорбция, перегонка и ректификация, кристаллизация, сушка и др.

Скорость массопередачи при заданной температуре зависит от интенсивности молекулярной диффузии, т. е. способности самопроизвольного проникновения одного вещества в другое за счет беспорядочного движения мо­лекул. Процесс переноса массы из одной фазы в другую происходит за счет разности концентраций вещества в этих фазах до тех пор, пока не будут достигнуты усло­вия равновесия. Движущая сила процесса массопередачи, ее эффективность может быть выражена в любых едини­цах, применяемых для определения состава фаз, однако наиболее часто движущая сила процесса выражается че­рез разницу между рабочими и равновесными концентра­циями распределяемого компонента в первой и второй фазах соответственно. Количество массы, передаваемое из одной фазы в другую, зависит от поверхности раздела фаз, продолжительности процесса и разности концентра­ций.

Повышение эффективности процессов массопередачи может быть достигнуто за счет увеличения поверхности контакта фаз, возрастания скорости потока и его турбулизации, а также снижения диффузионного сопротивле­ния среды (например, в процессе абсорбции случай по­глощения плохорастворимого газа). Ниже приводятся примеры основных процессов массопередачи.

Абсорбцией называют процесс поглощения газа или пара жидким поглотителем. Абсорбция характери­зуется избирательностью (селективностью), т. е. каждое вещество поглощается определенным поглотителем. Раз­личают абсорбцию простую, основанную на физическом поглощении компонента жидким поглотителем, и хемосорбцию, которая сопровождается химической реакцией между извлекаемым компонентом и жидким поглотите­лем. Примером простой абсорбции служит производство соляной кислоты, хемосорбция широко применяется в производстве серной и азотной кислот, азотных удо­брений и т. д. Абсорбция протекает в аппаратах колонно­го типа (насадочные, тарельчатые и др.).

Адсорбция есть процесс поглощения одного или нескольких компонентов из газовой или жидкой смеси твердым поглотителем - адсорбентом. Механизм про­цесса адсорбции, отличающийся от механизма абсорб­ции, практически аналогичен механизму других процес­сов массопередачи с участием твердой фазы. Наиболее универсальной теорией адсорбции является разработан­ная М. М. Дубининым теория объемного заполнения микропор, где учитывается притяжение молекул поглощае­мого вещества с адсорбентом на основе зависимости равновесия от структуры пор адсорбента. В качестве ад­сорбентов широко применяют твердые вещества с высо­коразвитой поверхностью и высокой пористостью (ак­тивные угли, силикагели, алюмогели, цеолиты - водные алюмосиликаты кальция и натрия, ионообменные смолы и др.). Адсорбция применяется в промышленности для очистки и сушки жидкостей и газов, для разделения сме­сей различных жидких и газообразных веществ, извлече­ния летучих растворителей, осветления растворов, для очистки воды и др. Адсорбция используется в химиче­ской, нефтяной, лакокрасочной, полиграфической и дру­гих отраслях промышленности.

Перегонка и ректификация применяются для разделения жидких однородных смесей, состоящих из двух и более летучих компонентов, и основаны на различной температуре кипения компонентов, т. е. на различной летучести компонентов смеси при одной и той же температуре. Если исходную смесь, состоящую из жидкостей с различными температурами кипения, частич­но испарять, а полученные пары конденсировать, то кон­денсат будет отличаться по своему составу более высо­ким содержанием низкокипящего компонента (НК), а оставшаяся исходная смесь будет обогащена трудноле­тучим высококипящим компонентом (ВК). Эта жидкость называется остатком, а конденсат - дистиллятом или ре­ктификатом. Существуют два принципиально отличных вида перегонки: простая (однократная) перегонка и ре­ктификация.

Ректификация представляет собой разделение смесей жидкостей, основанное на многократном испарении жид­кости и конденсации паров. В результате ректификации получают более чистые конечные продукты. Процесс осуществляют в аппаратах колонного типа (например, наса­дочные и тарельчатые ректификационные колонны не­прерывного действия и др.). Процессы перегонки и ректификации находят широкое применение в химиче­ской и спиртовой промышленности, в производстве ле­карственных препаратов, в нефтеперерабатывающей про­мышленности и т. д.

Кристаллизацией называется выделение твер­дой фазы в виде кристаллов из растворов или расплавов. Кристаллизация начинается с образования центров (или зародышей) кристаллизации. Скорость их образования зависит от температуры, скорости перемешивания и т. д. С повышением температуры скорость роста кристаллов увеличивается, однако это приводит к образованию бо­лее мелких кристаллов и часто вызывает снижение дви­жущей силы процесса. Крупные кристаллы легче полу­чить при медленном их росте без перемешивания и небольших степенях пересыщения растворов, однако это снижает производительность процесса кристаллиза­ции. Нахождение оптимальной скорости кристаллизации и составляет одну из основных задач этого процесса.

Широко применяются несколько способов кристалли­зации: кристаллизация с охлаждением, кристаллизация с удалением части растворителя, а также вакуум-кристал­лизация. В зависимости от способа кристаллизации при­меняют кристаллизаторы периодического и непрерывно­го действия.

Кристаллизация лежит в основе металлургических и литейных процессов, получения покрытий, пленок, применяемых в микроэлектронике, а также используется в химической, фармацевтической, пищевой и других от­раслях промышленности. Кристаллизация является за­вершающей стадией в производстве минеральных солей, удобрений, органических и особо чистых веществ. Особое значение в промышленности имеет процесс кристаллиза­ции металлов из расплавов.

Сушкой называют процесс удаления влаги из раз­личных (твердых, жидких и газообразных) материалов. Влага может быть удалена испарением, сублимацией, вы­мораживанием, токами высокой частоты, адсорбцией и т. д. Однако наиболее распространена сушка испарением за счет подвода теплоты. Более экономичным является последовательное удаление влаги фильтрацией, центри­фугированием (с содержанием остаточной влаги 10 - 40%), а затем тепловой сушкой.

Различают контактную и конвективную сушку. В кон­тактной сушке передача теплоты к высушиваемому мате­риалу осуществляется через стенку аппарата. Конвектив­ная сушка основана на непосредственной передаче теплоты материалу от нагретого воздуха, топочных га­зов, перегретого пара и т. д.

Скорость сушки определяется количеством влаги, уда­ляемой с единицы поверхности высушиваемого материа­ла в единицу времени. Скорость сушки, условия ее прове­дения и аппаратурное оформление в значительной степени зависят от природы высушиваемого материала, характера связи влаги с материалом, размера кусков, толщины слоя материала, влагосодержания материала, внешних факторов (температуры, давления, влажности) и т. д.

Традиционными сушилками, применяемыми в про­изводстве строительных материалов, минеральных солей, красителей и т. д., являются сушилки непрерывного дей­ствия (барабанные, туннельные, конвейерные, пневмати­ческие с кипящим слоем) и периодического действия (ямные, шкафные, камерные и т. д.). Наиболее эффек­тивны распыливающие сушилки с кипящим слоем. Для улучшения качества высушиваемых материалов, увеличе­ния скорости высушивания и улучшения технико-эконо­мических показателей применяется сушка вакуумная, ин­фракрасная, криогенная, ультразвуковая, СВЧ.